SE Labs

Posts tagged 'phishing'

Email security: Is it any good against hackers?

Email security against hackers

World’s first in-depth, public test of security services vs. targeted attacks. We pit email security against hackers.

This email security test report is the product of two years of advanced threat research. We have worked with the security companies themselves and with their customers.  We have monitored what the bad guys have been doing and identified and replicated real-world email threats that affect everyone generally, and also specific types of businesses.

There is no report like this anywhere in the public domain. We are extremely proud to present the results here.

Read more >

Tough test for email security services

email security services

Our latest email cloud security test really challenged the services under evaluation.

Latest report now online.

Last summer we launched our first email cloud security test and, while it was very well received by our readers and the security industry as a whole, we felt that there was still work to do on the methodology.

This report shows the results of six months of further development, and a much clearer variation in the capabilities of the services under test.

The most significant change to the way we conducted this test lies in the selection of threats we used to challenge the security services: we increased the number and broadened the sophistication.

Whereas we might have used one fake FBI blackmail email previously, in this test we sent 10, each created using a different level of sophistication. Maybe a service will detect the easier versions but allow more convincing examples through to the inbox?

We wanted to test the breaking point.

We also used a much larger number of targeted attacks. There was one group of public ‘commodity’ attacks, such as anyone on the internet might receive at random, but also three categories of crafted, targeted attacks including phishing, social engineering (e.g. fraud) and targeted malware (e.g. malicious PDFs).

Each individual attack was recreated 10 times in subtly different but important ways.

Attackers have a range of capabilities, from poor to extremely advanced. We used our “zero to Neo” approach to include basic, medium, advanced and very advanced threats to see what would be detected, stopped or allowed through.

The result was an incredibly tough test.

We believe that a security product that misses a threat should face significant penalties, while blocking legitimate activity is even more serious.

If you’re paying for protection threats should be stopped and your computing experience shouldn’t be hindered. As such, services that allowed threats through, and blocked legitimate messages, faced severe reductions to their accuracy ratings and, subsequently, their chances of winning an award.

Intelligence-Led Testing

We pay close attention to how criminals attempt to attack victims over email. The video below shows a typically convincing attack that starts with a text message and ends stealing enough information to clean out a bank account.
SE Labs uses current threat intelligence to make our tests as realistic as possible. To learn more about how we test, how we define ‘threat intelligence’ and how we use it to improve our tests please visit our website and follow us on Twitter.

Anatomy of a Phishing Attack

Phishing AttackWe look at phishing attack tactics and impact. Who attacked a couple of internet pressure groups earlier this year? Let’s examine the evidence.

It is interesting to read about the public details of an unusually high-quality spear-phishing attack against a low value target. Particularly if you are engaged in constructing carefully-crafted tests of email security services.

Read more >

Brexit and Cybersecurity

brexit

Is the UK headed for a cybersecurity disaster? With Brexit looming and cybercrime booming, the UK can’t afford major IT disasters, but history says they’re inevitable.

The recent WannaCry ransomware tsunami was big news in the UK. However, it was incorrectly reported that the government had scrapped a deal with Microsoft to provide extended support for Windows XP that would have protected ageing NHS computers. The truth is far more mundane.

Read more >

Infected websites, back from the dead

Forgotten, infected websites can haunt users with malware.

infected websites

Last night, I received a malicious email. The problem is, it was sent to an account I use to register for websites and nothing else.

Over the years, I’ve signed up for hundreds of sites using this account, from news to garden centres. One of them has been compromised. The mere act of receiving the email immediately marked it out as dodgy.

Read more >

“Can You Hear Me?”: Cybercrime mis-reporting

cybercrime mis-reporting

Are cyber-scammers creating their own fake news stories to exploit? Jon Thompson investigates cybercrime mis-reporting.

The UK media recently exploded with news of a new phone-based scam. Apparently, all that’s needed for fraudsters to drain your bank account is a recording of you saying “yes”. It runs as follows:

  1. Someone calls and asks if you can hear them
  2. They record you saying “Yes”
  3. They take your ID and money
Read more >

17 Things Spammers Get Wrong


No one publishes successful phishing and ransomware emails. Jon Thompson thinks he knows why.

ransomware-8145580The headlines say phishing scams are at an all-time high, and ransomware is growing exponentially, but conspicuous by their absence are examples of the emails behind successful attacks. It’s becoming the cliché in the room, but there may be a reason: embarrassment.

Running an email honeypot network, you receive a flood of malicious email every day. Most is littered with glaring errors that point to lazy, inarticulate crooks trying to make the quickest buck from the least effort. When you do come across a rare, well though-out campaign, it shines like a jewel in a sea of criminal mediocrity.

To the average spammer, however, it’s all just a numbers game. He cranks the handle on the botnet, so to speak, and money comes out.

This poses an important question: why, given the quality of most malicious spam, are new ransomware infections and high profile phishing attacks still making headlines almost every single day? Clearly, we’re massively overestimating the amount of effort and intelligence invested by spammers.

With that in mind, what follows is a short list of 17 mistakes I routinely see, all of which immediately guarantee that an email is malicious. There are others, but these are the main ones. If this list reflects the mistakes found in the spam behind the headlines, then the size yet lack of sophistication of the problem should become apparent.

1.    No Subject Header

This error is particularly prevalent in ransomware campaigns. Messages whose payloads have very low VirusTotal scores are being sent with no subject header. Maybe the sender thinks it’ll pique the curiosity of the recipient, but it should also alert spam filters even before they examine the attachment.

2.    No Set Dressing

tesco-6478043

Look at any real communication from a bank, PayPal, a store, etc. It is well formatted, the HTML is clean, the language is clear, and the branding is obvious. Legitimate companies and banks don’t tend to send important messages in plain text.

3.    Generic Companies

generic-1081819

Generic companies are rare but I do occasionally see them. Who is “the other financial institution” and why has it refused my transaction? Vague, instantiated company names like this, with an accompanying attachment, are clear indicators of spam.

4.    Multiple Recipients

This is another example of laziness on the part of spammers. OK, they may have found an open relay to willingly spread messages rather than buy extra time on a botnet, but anything other than a one-to-one sender to recipient ratio should be an instant red flag.

5.    Poor Salutation

Much apparently personalised spam doesn’t use a competent salutation, or uses a salutation that is simply the user name part of the email address (i.e.: “Dear fred.smith”). It would take effort to code a script that personalises the messages by stripping off the first name and capitalising the initial. Effort is the enemy of the fast buck.

6.    No Body Text

Sending an email with a tantalizing subject header such as “Overdue – Please Respond!” but no body text explaining what or why it’s overdue is as common in commodity ransomware as having no subject header. The attack again relies entirely on the natural curiosity of the recipient, who can and should simply ignore it. Spam filters should also take a keen interest.

7.    Auto-translated Body Text

paypal2-9354648

Machine translation has the amusing habit of mapping the grammar of one language onto another, resulting in errors that no native speaker would ever make. Manual translation by a highly fluent speaker is far superior to machine translation, but the translator must also have knowledge of the subject matter for his text to appear convincing. Again, this is effort.

8.    The Third Person

This is a great example of a spam writer trying to distance himself from his crime. “PayPal has detected an anomaly in your account” and “they require you to log in to verify your account” just look weird in the context of a security challenge. This is supposed to be from PayPal, isn’t it?

9.    Finger Trouble

apple2bicloud2b2-6952704

I’m fast concluding that some cybercriminals really do wear thick leather gloves while typing, just like in the pictures. Either that or they’re blind drunk. Random punctuation marks and extra characters that look like they’ve been hit at the same time as the correct ones don’t make a good impression. Simply rejecting emails that have more than a certain percentage of spelling mistakes might prevent many of these messages from getting through.

10.    Unexpected Plurals and Tenses

Using “informations” instead of “information” is a dead giveaway for spam and should be blocked when in combination with other indicators. Phrases such as “we detect a problem” instead of “we detected a problem” also stick out a mile.

11.    Missing Definite Article

Many spam emails stand out as somehow “wrong” because they miss out the definite article. One recent example I saw read: “Access is blocked because we detect credit card linked to your PayPal account has expired.” An associated Yandex.ru return address gave the whole thing a distinct whiff of vodka.

12.    The Wrong Word

“Please review the document and revert back to us immediately”. Revert? Really? Surely, you mean “get back”, not “revert back”. It may be difficult for spam filters to weed out this kind of error, but humans should spot it without difficulty.

13.    Misplaced Emphasis

paypal-1531640

Unusually capitalised phrases such as “You must update Your details to prevent Your Account from being Suspended” look weird. Initial capitalisation isn’t used for emphasis in English sentences, and hints at someone trying to make the message sound more official and urgent than it is.

14.    Tautological Terrors

cps-7972121

“It is extremely mandatory that you respond immediately”. Not just mandatory but extremely mandatory? Wow, I’d better click that link right away! Urgent calls to action like this overplay the importance of the message in ways that mark them out as fake.

15.    Grandiosity

splayer-6973270

Using grand words where normal ones should appear to make a message sound more authoritative are a dead giveaway.  Here’s an example from last September when a gang famously tried to distribute malware on the back of a new media player release: “To solemnise the release of our new software”. Solemnise means to mark with a formal ceremony.

What they really meant was: “To mark the release of our new software”.  The whole message was also riddled with the most outrageous auto-translate errors that it made difficult reading.

16.    Overly-grand Titles

Why would the Microsoft Chief Support Manager be contacting me personally all the way from the US to give me a refund? Wouldn’t he delegate this important work to a local minion? Similarly, the head of the IMF doesn’t usually spend their days emailing strangers about ATM cards stacked high with cash.

17.    Obfuscated URLs

If the collar doesn’t match the cuffs, it’s a lie. In other words, if the message contains the name of a high-street bank (for example) and a URL from a shortening service such as bit.ly, spam filters should be blocking the message without question, regardless of the rest of the content.

Predictions for 2017

golden-2017-new-year-text-with-glowing-glitter-effect-and-fireworksStill dazed from the year that was, Jon Thompson dons his Nostradamus hat, dusts off his crystal ball
and stares horrified into 2017.

Prediction is difficult. Who would have thought a year ago that ransomware would now come with customer care, or that Russia would be openly accused of hacking a bombastic businessman into the Whitehouse. Who even dreamed Yahoo would admit to a billion-account compromise?

So, with that in mind, it’s time to gaze into the abyss and despair…

Let’s get the obvious stuff out of the way first. Mega credential breaches won’t go away. With so many acres of forgotten code handling access to back end databases, it’s inevitable that the record currently held by Yahoo for the largest account breach will be beaten.

Similarly, ransomware is only just beginning. Already a billion-dollar industry, it’s cheap to buy into and easy to profit from. New techniques are already emerging as gangs become more sophisticated. First came the audacious concept of customer service desks to help victims through the process of forking over the ransom. By the end of 2016, the Popcorn Time ransomware gang was offering decryption for your data if you infect two of your friends who subsequently pay up. With this depth of innovation already in place, 2017 will hold even greater horrors for those who naively click attachments.

Targeted social engineering and phishing attacks will also continue to thrive, with innovative

campaigns succeeding in relieving companies of their revenues. Though most untargeted bulk phishing attempts will continue to show a low return, phishers will inevitably get wise and start to make their attacks more believable. At SE Labs, we’ve already seen evidence of this.

It’s also obvious that the Internet of Things will continue to be outrageously insecure, leading to DDoS attacks that will make the 1.1Tbps attack on hosting company OVH look trivial. The IoT will also make ransomware delivery even more efficient, as increasing armies of compromised devices pump out the pink stuff. By the end of 2017, I predict hacking groups (government-backed or otherwise) will have amassed enough IoT firepower to knock small nations offline. November’s test of a Mirai botnet against Liberia was a prelude to the carnage to come.

Bitcoin  btc-mono-ring-orange-6370546recently passed the $1,000 mark for the first time in three years, which means criminals will want even more than ever to steal the anonymous cryptocurrency. However, a flash crash in value is also likely as investors take profits and the market panics in response to a sudden fall. It’s happened before, most noticeably at the end of 2013. There’s also the distinct possibility that the growth in value is due to ransomware, in which case the underlying rally will continue regardless of profit takers.

The state-sponsored use of third party hacking groups brings with it plausible deniability, but proof cannot stay hidden forever. One infiltration, one defection, one prick of conscience, and someone will spill the beans regardless of the personal cost. It’s highly likely that 2017 will include major revelations of widespread state-sponsored hacking.

This leads me neatly on to Donald Trump and his mercurial grasp of “the cyber”. We’ve already delved into what he may do as president, and much of what we know comes straight from the man himself. For example, we already know he skips his daily security briefings because they are “repetitive”, and prefers to ask people around him what’s going on because “You know, I’m, like, a smart person.

Trump’s insistence on cracking down on foreign workers will have a direct impact on the ability of the US to defend itself in cyberspace. The shift from filling jobs with overseas expertise to training homegrown talent has no discernible transition plan. This will leave a growing skills gap for several years as new college graduates find their way to the workplace. This shortfall will be exploited by foreign threat actors.

Then there’s Trump’s pompous and wildly indiscreet Twitter feed. Does the world really need to know when secret security briefings are postponed, or what he thinks of the intelligence presented in those meetings? In espionage circles, everything is information, and Trump needs to understand that. I predict that his continued use of social media will lead to internal conflict and resignations this year, as those charged with national cybersecurity finally run out of patience.

donald-trump-spars-with-univision-journalist-jorge-ramos-6442066

It’s not all doom and gloom, however. The steady development of intelligent anti-spam and anti-malware technologies will see a trickledown from advanced corporate products into the hotly contested consumer market. The first AV vendor to produce an overtly next gen consumer product will change the game – especially if a free version is made available.

There’s also a huge hole in “fake news” just begging to be filled. I predict that 2017 will see the establishment of an infosec satire site. Just as The Onion has unwittingly duped lazy journalists in the past, there’s scope for the same level of hilarity in the cybersecurity community.

However, by far the biggest threat to life online in 2017 will continue to be the end user. Without serious primetime TV and radio campaigns explicitly showing exactly what to look for, users will continue to casually infect themselves and the companies they work for with ransomware, and to give up their credentials to phishing sites. When challenged, I also predict that governments will insist the problem is being addressed.

So, all in all, it’s business as usual.

Happy 2017!

How To Really Stop Phishing

If phishing sites want data, they’ll get it!
phishing-3415461
Running a honeypot, you soon realise there are four types of spam. The first is basically just adverts. Next comes social engineering spam, which is mostly advanced fee fraud. There’s a ton of cash or a pretty girl waiting if you send a small processing fee. By far the largest category is ransomware, but this is closely followed by that perennial favourite, phishing spam.

Phishing works. Its “product” nets huge profits in two ways. First, by direct use of the stolen data. Second, from sales of that data to other criminals. This got me thinking about how to fight back.

Phishing sites tend to be static replicas of the real thing, with a set of input boxes and a submit button. That is their major weakness. Another is that, though the inputs might be scrubbed to remove the possibility of a sneaky SQL injection, the information being entered might not be checked. Who’s to say that the date of birth, password, bank details etc. that you enter are real? What if you were to enter a thousand different sets of bogus information? How about a million, or even ten million?

paypal-6108084
What I propose is that when a phishing site is discovered, it would be fun to deploy a script to flood it with random data of the appropriate format for each input field. Finding real data in the collected noise would become nearly impossible, and so would help protect the innocent. If such poor-quality data is sold on to third parties, then Mr Big will soon want his money back and probably a lot more besides.

Diluting phished data to homeopathic strengths is one thing, but the general idea could be applied in other ways. One of the main tasks in running a spam honeypot is “seeding”. This involves generating email addresses to accidentally-on-purpose leave in plain sight for later harvesting by spammers. If someone were to set up a honeypot with a huge number of domains pointing to it, and with a huge number of active login accounts, those accounts can be leaked or even sold (with all profits going to charity, naturally!) as being demonstrably live and real. If the buyer tests any of them, they’ll work. Set up the honeypot in enough interesting detail, and Mr Big won’t be able to tell he’s been duped for quite some time.

Phishing is popular because it’s easy, relatively safe for the perpetrator, and highly profitable. Frustrating the efforts of criminals, casting doubt on the phished data being sold, and hopefully causing wars between cybergangs is certainly one potentially very entertaining way of fighting back.

Of course, flooding phishing sites with bogus data may already be quietly happening. I certainly hope so…

Recovering From Password Fatigue

How do we solve the need for lots of strong passwords?

xkcd2bpassword_strength-2697560Mention password strength online and someone will usually reference the famous XKCD password cartoon. If you haven’t seen it, the idea is that the entropy of the password must be as high as possible, and that this can be adequately achieved by stapling together easily-remembered conjunctions of words
rather than difficult-to-remember strings of meaningless symbols. Some commentators have since pointed out flaws in the logic behind that cartoon.

Entropy is a head-twisting concept. Put simply, it is a measure of the chaos, disorder or unpredictability something contains. In information theory, entropy can be calculated and boils down to how many unknowns there are in a piece of data.

Consider a game of hangman. At the beginning of the game, none of the letters are known. Because there are many different possibilities, we can say that the unknown word contains high entropy. As you reveal each letter, the entropy quickly drops because of the way the English language works. Q is usually followed by U, for example, and not P or S or J. After revealing surprisingly few letters, we can usually infer the full word and win the game.

Passwords need high entropy. There should be no relationship between letters, so that if one character becomes known, it does not compromise the rest. If someone shoulder surfs you and spots you typing something like “M4nch3st” and they know you’re a Manchester City or United fan from glancing at your coffee mug, then your carefully placed capital and number substitutions are all for naught.

Many people still think that strong passwords are required to protect from brute force attacks, but this is largely false. When cybercriminals want passwords, they either take them by the million using attacks such as SQL injections, or have people hand them over in phishing attacks. Because of this, we need lots of passwords to compartmentalise our lives into discrete blocks. Compromise one account and the others stay secure. Re-use them across accounts, and one key fits many locks.

There are lots of strategies for generating and remembering high entropy passwords. One successful technique is as follows:

1: Take a long line from a favourite book, play, song, nursery rhyme, whatever.

2: Take the initial letters from the words in the line and put them together.

3: Change vowels into numbers and other symbols, capitalise others.

Et voila! A long, high entropy password you cannot forget. Here’s an example based on an episode of a sitcom that came to mind just now quite by chance:

In the Fawlty Towers episode The Germans, the Major says something like: “I must have been keen on her; I took her to see India!”

The 13 initials in this phrase are: imhbkohithtsi

Changing some letters to symbols and capitalising others gives: !mHbK0H1ThTsI

password2bstrength-2964104The online password strength meters I tried claim this password is strong or even very strong. Someone would have to know you were keen on that episode of that sitcom, guess the exact line from it, and guess exactly how you’d mangled the initials to stand a chance of recovering the generated password.

Now do that for the dozens of sites you need to log into, even those sites you intend to use very little but for which you must still set up an account. Ideally, each password must be different and unrelated. It’s just not practical, is it? In fact, that sinking feeling you’re probably experiencing has a name: password fatigue.

We could just store all our passwords in our browsers and create a master password to protect them. But what if we want to log in from another laptop, tablet or phone? This problem has led to the rise of the password manager.

A good password manger needs to securely store all your passwords, and to sync across all your devices. It should automatically capture the passwords you enter as it goes, and should contain some nice-to-have features. For example, the option to generate random, very high entropy passwords would be good. Intelligent form filling would also be useful.

There are other potential advantages to password managers. Because they recognise the sites you visit, if you get taken in by a phishing email and click on a link to enter your password, the manager will not recognise it, and should fail to cough up the creds. If you’ve allowed the manager to generate random passwords that you never see, there’s no danger of you overriding it either.

I’m not going to recommend a single password manager, but you should check them out sooner rather than later. Instead I will point you to a comparison chart for you to make your own decision.

There are pros and cons to using password managers, however. Some people, like our own Simon Edwards, have argued that caution is needed. Last year, for example, cloud-based password manager LastPass was hacked and user data spilled (including security questions and encrypted passwords). Malware has also targeted local password managers such as KeepPass that do not use a cloud service.

Because of these weaknesses and attacks, passwords and password managers may not be enough. A good password manager also needs to feature 2-factor authentication. Biometric authentication would be even better as this is substantially harder to subvert.

About

SE Labs Ltd is a private, independently-owned and run testing company that assesses security products and services. The main laboratory is located in Wimbledon, South London. It has excellent local and international travel connections. The lab is open for prearranged client visits.

Contact

SE Labs Ltd
Hill Place House
55A High Street
Wimbledon
SW19 5BA

020 3875 5000

info@selabs.uk

Press